Osmotic remedial response in a galactose-negative mutant of Saccharomyces cerevisiae.

نویسندگان

  • J Bassel
  • H C Douglas
چکیده

We investigated an osmotic remedial mutant of Saccharomyces which was deficient in galactose-1-phosphate uridyl transferase. Both the rate of growth and the transferase activity of the mutant culture were dependent on the osmotic activity of the growth medium. Organic and ionic solutes proved to be equally effective in inducing the osmotic remedial response. The galactose pathway enzymes were separable by ultracentrifugation, indicating that a stable interenzyme complex was not formed. The results were consistent with the hypothesis that the corrective effect occurs at the tertiary or quaternary level of organization in an environmentally sensitive protein. The possibility that the osmotic remedial response represents an effect of translation is discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of an Interesting Novel Mutant Strain of Commercial Saccharomyces cerevisiae

The yeast strains that are resistant to high concentration of ethanol have biotechnological benefits and aresuitable models for physiology and molecular genetics research fields. A novel ethanol-tolerant mutant strain,mut1, derived from the commercial Saccharomyces cerevisiae showed higher ethanol production, and alsodemonstrated resistance to ethanol but not to other alcohols...

متن کامل

Expression of YAP4 in Saccharomyces cerevisiae under osmotic stress.

YAP4, a member of the yeast activator protein ( YAP ) gene family, is induced in response to osmotic shock in the yeast Saccharomyces cerevisiae. The null mutant displays mild and moderate growth sensitivity at 0.4 M and 0.8 M NaCl respectively, a fact that led us to analyse YAP4 mRNA levels in the hog1 (high osmolarity glycerol) mutant. The data obtained show a complete abolition of YAP4 gene ...

متن کامل

Multiple Conformations of Gal3 Protein Drive the Galactose-Induced Allosteric Activation of the GAL Genetic Switch of Saccharomyces cerevisiae.

Gal3p is an allosteric monomeric protein that activates the GAL genetic switch of Saccharomyces cerevisiae in response to galactose. Expression of constitutive mutant of Gal3p or overexpression of wild-type Gal3p activates the GAL switch in the absence of galactose. These data suggest that Gal3p exists as an ensemble of active and inactive conformations. Structural data have indicated that Gal3...

متن کامل

Optimization of Culture Conditions for Enrichment of Saccharomyces cerevisiae with Dl-α-Tocopherol by Response Surface Methodology

Designing enriched probiotic supplements may have some advantages including protection of probiotic microorganism from oxidative destruction, improving enzyme activity of the gastrointestinal tract and probably increasing half-life of micronutrient. In this study Saccharomyces cerevisiae enriched with α-tocopherol produced as an accumulator and transporter of a lipid soluble vitamin for the fir...

متن کامل

Specific and global regulation of mRNA stability during osmotic stress in Saccharomyces cerevisiae.

Hyperosmotic stress yields reprogramming of gene expression in Saccharomyces cerevisiae cells. Most of this response is orchestrated by Hog1, a stress-activated, mitogen-activated protein kinase (MAPK) homologous to human p38. We investigated, on a genomic scale, the contribution of changes in transcription rates and mRNA stabilities to the modulation of mRNA amounts during the response to osmo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 95 3  شماره 

صفحات  -

تاریخ انتشار 1968